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Unsteady free-surface waves due to a submerged body moving in a viscous fluid
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Unsteady viscous free-surface waves generated by a three-dimensional submerged body moving in an
incompressible fluid of infinite depth are investigated analytically. It is assumed that the body experiences a
Heaviside step change in velocity at the initial instant. Two categories of the velocity ctigrfgem zero to
a constant andii) from a constant to zero, will be analyzed. The flow is assumed to be laminar and the
submerged body is mathematically represented by an Oseenlet. The Green functions for the unbounded un-
steady Oseen flows are derived. The solutions in closed integral form for the wave profiles are given. By
employing Lighthill's two-stage scheme, the asymptotic representations of free-surface waves in the far wake
for large Reynolds numbers are derived. It is shown that the effects of viscosity and submergence depth on the
free-surface wave profiles are respectively expressed by the exponential decay factors. Furthermore, the un-
steady wave system due to the suddenly starting body consists of two families of steady-state waves and two
families of nonstationary waves, which are confined within a finite region. As time increases, the waves move
away from the body and the finite region extends to an infinite V-shaped region. It is found that the nonsta-
tionary waves are the transient response to the suddenly started motion of the body. The waves due to a
suddenly stopping body consist of a transient component only, which vanish as time approaches infinity.
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[. INTRODUCTION the unsteady free-surface waves generated by a simple
source suddenly brought into existence at tim® and mov-

The generation of waves due to a moving body on ofing with a constant velocity in an inviscid fluid was given by
below the free surface has been investigated by many repehansen and Laitorfd] and the corresponding asymptotic
searchers in view of its practical importance and theoreticagxpression for transient free-surface waves was provided by
interest. The general mathematical problem posed in terms dfiu and Tao[6]. The asymptotic expression for transient
the well-known Navier-Stokes equations is extremely diffi- free-surface waves due to a simple source suddenly stopped
cult to solve. Even if the effect of nonlinear convective termsat time t=0 in an inviscid fluid was provided by Lu and
can be neglected, to solve the resultant linearized equatiofshwang[7]. It can be seen from Liu and Tao’s solution and
is still a formidable task. Of the few analytical approachesLu and Chwang’s solution that the transient inviscid waves
available for solving linear problems, one is the singularitydo not tend to zero as time goes to infinity, which is incom-
method, which originates from the method of Green func-Patible with the physical reality. In addition, the effect of the
tions for linear partial differential equations, as discussed byaminar far wake on the free-surface waves for a body mov-
Chwang and WU 1], Clauser[2], and Dabrog3]. By the N in & viscous fluid has not been considered by the poten-
superposition principle for linear systems, a body of arbitranyfia! theories. . .
shape can be simulated, at least theoretically, by a discrete %tléﬁ g%g;g?ﬁg;&m t%”nﬂg;dfsre%r-i r:?;g;allyavgngs.a -I;Zal
continuous distribution of fundamental singularities WhileﬂuidI Wu and Messicl{lg]l considered tuhe effevcvt Xf visl,cosity
the flow field can be represented by the corresponding dis- ' " . .
tribution of fundamental solutions. The type and distributionoor;eserrl:ﬂyr\;vea\;ep%rgrin:\gt?(;ﬂ'mgl?nilggﬁ)lagg%sg;dizgsﬁi gfrj an
g;;ﬁggﬁgﬁﬁgSrg‘g\zg'g%?j;oagg grﬁﬂedr?;)teur;g gfineogow. ct of viscosity on three-dimensional steady ship waves.
Therefore, the mathematical formulation for a body-induce ig;ygf[i?(]e;c?; ?rlggiiﬁgégtsg\i?&?ﬁ I\allit;%r(;ljc;rvtvf;iér;teéa:;—rd
flow may be characterized by a fundamental singularity, an '

o ol K th ding fund | soluti 11] studied the effect of wake and vorticity on the ship
itis essential to seek the corresponding fundamental solutiofy /a5 Based on the Oseenlet solution, Dudz) and Am-
as the first step to solve the full problem. Based on the po

. > . . micht[13] analytically studied the drag and lift exerted on a
tential theories, analytical solutions for steady free-surfac

d b . inaularities in inviscid fluid eéubmerged plate moving near the free-surface of a viscous
waves generated by moving singularities In inviscid uidsg, iy \vithout and with the surface tension respectively. Lurye

are well developedl4,5]. The mathematical formulation for [14] and Chan and Chwar{d5,16] obtained analytical solu-
tions for the three-dimensional steady viscous waves due to
various Oseenlets and Oseen doublets. Recently, Liu and Tao
*Corresponding author. Fax:+852 2858 5415; electronic ad- [17] and Lu[18] analytically studied the free-surface waves
dress: atchwang@hkucc.hku.hk and far wakes generated by a floating body in a viscous fluid
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of infinite depth, in which the floating body is modeled as a z

surface pressure point. Starting from Lurye’s formulation, Lu

[19] also reconsidered the steady wave-wake interaction

problem in a viscous fluid of infinite depth and provided the

full asymptotic expansions of wave profiles in the far wake

for large Reynolds numbers, from which the viscous correc-

tion for the wave profile is explicitly seen. The validity of the

asymptotic approximation has been verified by[R0] with

a numerical analysis. The investigation on viscous phenom- FIG. 1. Definition of the coordinate system.

ena has gradually become an expanding branch in the field of

free surface flows, as stated by Tyve@i]. The aforemen-  yiscous incompressible fluid with a free surface shall be con-

tioned works were based on the assumption that all motiongjgered. It is assumed that the point force experiences a

attain a steady state. However, in many situations the bodpeaviside step change in velocity. Cartesian coordinates are

may experience an unsteady motion. Based on the unsteagken fixed on the body, as shown in Fig. 1. Thaxis is

Stokes equations, Maxey and RilE32] obtained an analyti-  51ong the straight path of the moving point while thexis

cal solution for fluid motion resulting from a sphere starting points vertically upward. Thus the fluid is moving at a uni-

from rest and having an impulsive veloc[t§(t),0,0], where  form velocity Ue,, whereU is a constant ane, the unit

d() is the Dirac delta function. Pozrikidig23] derived an  vector in thex direction. The disturbed flow is assumed to be

explicit expression for the three-dimensional oscillatory|jaminar.

Stokeslet. It is believed that the convolution-integral formu-  \We choosepU? as a reference pressutd?/g as a char-

lation of a transient Oseenlet given by Price and [@# and  acteristic length, wherp is the density of the fluid and the

a series of generalized unsteady Oseenlets derived by Chgravitational acceleration. For simplicity, the velocity is non-

and Chwand25] and Shu and Chwanfp6] are useful to  dimensionalized by, the pressure bpU?, the distance by

study the unsteady flow fields associated with a body maneus?/g, the external force byU?(U%/g)?, and the time by

vering in an unbounded viscous fluid. For the flow in ay/g. The governing equations are the dimensionless conti-

bounded fluid, Shu and Chwarig7] considered the short- nyity equation

time slamming effect on the surface waves of a viscous fluid.

Based on the formulation and methodology developed by V-u=0 1)

Shu and Chwan{28] for transient Marangoni waves due t0 4nq the unsteady Oseen equations with a singular force term

the impulsive motion of a submerged singularity, Lu and

Chwang[29] derived the wave front and wave profiles gen- au du _ >

erated by a surface-piercing singularity in three dimensions. 7 " x VP +eVAUrFaX = xgH(W), 2)

On the other hand, Liu and Td6] studied the viscous free- ] ] )

surface waves due to a suddenly starting Oseenlet and fourféereu=(u,v,w) is the disturbed velocityP the hydrody-

a finite region of validity for the steady-state solution. Lu andnamic pressure, which is equal to the total presgunanus

Chwang[30] investigated the two-dimensional free-surfacethe hydrostatic pressure due to gravity: ug/ pU, whereu

waves due to an oscillatory Oseenlet moving in an incomiS th_g viscosity of the fluidF is the singular force located at

pressible viscous fluid of infinite depth. However, analyticalPOSitionxo=(0,0,-hy), whereh, is the submergence depth.

solutions for the transient waves in a viscous fluid have noti() is the Heaviside step function. The dimensionless pa-

been obtained and the interaction of a laminar far wake withiametere can be regarded as the reciprocal of the Reynolds

unsteady free-surface waves has not been fully explorediumber with respect to the characteristic length.

which are of interest in the present paper. For small-amplitude waves, we impose the linearized
In this paper, we analytically study the unsteady free-boundary conditions at the undisturbed free surfac8,

surface waves generated by a point force moving in an in- PR

compressible viscous fluid of infinite depth. The point force, —+—=w, €)]

mathematically represented by an Oseenlet, is assumed to

experience a Heaviside step change in velocity at the initial

instant. The general mathematical model for this wave-wake 8(@ + ‘7‘_"’) =0 (4)

interaction problem is formulated in Sec. Il. The analytical '

solutions for far-field waves due to a suddenly starting and

stopping Oseenlet are obtained in Secs. Il and IV, respec- v ow\
tively. The physical characteristics of the unsteady viscous oz + @ =0, (5
waves are explicitly discussed in Sec. V. Finally, conclusions
are made in Sec. VI. W
p-2:—=0, (6)

Il. GENERAL MATHEMATICAL FORMULATION . .
wherep=P- 7 is the total pressure on the undisturbed free

The disturbed flow field and the free-surface waves due tgurfacez=0, 7 is the dimensionless elevation of the free
a point force moving along a straight line in a stationarysurface.
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When the velocity of the point force changes from zero to It is convenient to introduce a combination of the Laplace
a constant at the instant0, the initial velocity and free- transform with respect tband a Fourier transform with re-
surface wave elevation are taken to be those of the quiescespect tox andy, for z<0,
fluid case. When the velocity of the point force changes from " o o
a constant to zero, the initial values are taken to be those of [%a\TT] :f e—stf f [ 7,2V 687
the corresponding steady-state solutions. 0 o J

Ill. UNSTEADY VISCOUS FREE-SURFACE WAVES DUE Xe‘iax_iﬁydxdydt, (149
TO A SUDDENLY STARTING OSEENLET
where
To simulate the free-surface flow past a moving sub- >
merged body, we investigate the theoretical solution for a Ala,B) =o'+ B, (14b)
free-surface flow due to a forcel€te,+F,e, located atx,
where F, is the strength of the applied drag afg the B(s,a,B) = V(s+ia)le + o? + B2 (140

strength of the applied lift. Since the problem considered o . .
here is an initial-boundary-value one with a singularity, weSubstituting Egs. (148140 into boundary conditions

may regard the disturbed flogu,P) as the sum of an un- (_10)—(13) and t_he continuity equa.tion, we obtain a system of
bounded singular Oseen flofus, Po), which represents the N€ar equations for the five unknown variables
effect of viscous wakes, and an Oseen flaw, Pr), which (7, ®,Ur,v7,Wy), which can readily be solved. Upon some
represents the influence of the free surface and is regular iathematical manipulation, the integral expression for the

the whole region. Thus, wave profile can be written as
U =ug(X,t;Xg) + Ug(X,t), (79 . 1 fc+ioo foc jm N
y ,t, h = —
7I(X y 0) 8’773| N D
P =Pg(X,t;Xo) + Pr(X,1). (7b)

xXexpliax+iBy + st)dadBds, (153
By taking the Laplace transform over the unsteady Oseen M Y b

equations with a singular forcing terfd(x—xg)d(t), the where

corresponding Green function can be obtained by means of a __ ; 2\ (i _ _
straightforward manipulation. The solution of Eq4) and N=-(s+ia+2eA)(1aF,~ AFJexp~ Afy)
(2) with initial conditions for a quiescent fluid in an un- + 2eA(iaBF, — A%F )exp(- Bhy), (15b)
bounded field can be constructed[&84]

1 tq D=s(s+ia)[A+(s+ia+2eA?? - 4°A°B], (150

) — 2 It
Us(X,1:X0) = = E,F (V- V)fo r_t erf( Z\rm)dT’ and c is the convergence abscissa for the inverse Laplace
transform.
(8) The integral in Eq(1539 represents the solution for the

wave elevation due to a singular force, but the physical char-
L . acteristics of the wave motion are not explicitly seen in this
PaX.t:x) =— —FE- V| = |H®). 9 integral. Now the task is to extract information from Eq.
o o T (r) © © (15a. As stated by Noblesse and Chg#2], the Fourier in-
L . tegral representation for wave profiles can formally be de-
Furthermore, we \{Vrlt&JR—V@+\(T, WhereCI).(X,t) IS @ composed into a near-field nonoscillatory component and a
scalar potential function and+(x,t) is a solenoidal vector. 5. fiald wave component. The near-field component will

Therefore, we express the boundary conditions in terms gfapidly vanish as the distance from the singularity increases

wherer=||x—x,—te,|

®, V1, us, Psatz=0 as and will not be investigated in the present study while the
an dn [P far-field behavior for smalt is of principal physical interest.
o o T\ W) = ws, (10 It is noted that for smalt, D(s, a, 8) in Eq.(15¢) has four

simple poles with respect t§

2, ie1. . .
2ﬂ+%+%=_(ﬂs+%), (11 5= (- )"iVA-ia-2sA2+0(s%9), (j=1,2),

axdz 9z X gz ox (163
Z@ﬂﬂ(@ﬂ) 12 S— (16b)
oz gz Ay gz oy
5 s, =0. (160
PO PO owr) Mg
I + X +n+2 2 + ) Ps— ZSE! (13)  The inversion of the Laplace transform in E453 can be

determined by the sum of the residues of the integrand at
where(ur,v,Wy) and(us,vs, Ws) are the components &fr  these poles. By taking a contour integration in the complex
andug, respectively. plane, Eq.(159 can be represented by the double integral
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Lo (7N
7 mz f ] L D exdi(ax+ By)]dadB, (174

where

Nj = N|st! (17b)

DOZ D|$O (17C)

To obtain the asymptotic expansion of the Fourier-type
double integral in Eq(173, we shall employ Lighthill’'s two-
stage schemf83], which in essence involves calculating the
« integration by the residue theorem and phimtegration by
the method of steepest descents. For smdlly(a, 8) in EQ.
(170 has two simple zeros with respectdg

an=(- ) "™ay+isa; +O(e¥?), (n=1,2), (18a

where
ag(B) =[1 + (1 + 48312112 \2, (18b)
a,(B) = 4ad(2a5 - 1)L (180

We introduce the cylindrical coordinatd®, 6) on the
horizontal (x,y) plane byx=Rcos#, y=Rsin 6. Using the
residue theorem, the leading terms which contribute signifi-
cantly to the wave profile in the far field can be written as

a3G;n exdRf, (,6’)] ( )
i3 [ | et (1)1,
0<Rcosf<t, (199
where
Gjn = Nj|a=an1 (lgb) and
fn(B) = o, cosf+iBsin 6. (190

For the second stage of Lighthill's scheme, the method of
steepest descents should be employedddntegration at
largeR [14,15,19. The leading term of the solution for sta-
tionary points of the phase function is given [84]

B=Bam=(-1D"q,Qn’tand, (nm=1,2), (208

where
Om=2[1+(-1)™1 -8 tarf 6], (20b)
Qm = (qm + 1)/2- (20C)

By means of the steepest-descents analysis and other
mathematical manipulations, the formal expression for the
unsteady free-surface waves in the viscous far wake is given
by

2

n=H(t-Rcosd) > (7 + n) +o(R™Y,
k=0

(21)

where
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2

7o=-d?> dYdSQ¥YF, cosM, - QY?F, sinM,],

m=1

2
o= zngE dvdSQ

2 Q1’4h
= 2e"2dRY, dVdBQ3?| F, sin(Mm— m_%o
me1 \2e
1/4h
+e12F Q2 cos( My, ~ S ) :
\’28

2

2
== stE drdsdnQm

QY%F (3 cosM,— cosN,) ],

\2e

Q1/4

2 1/2
d"= ( Rcosﬁ) (1-8tarf o7
ar

dY = exp(- 4eq,,'Q3R cosb),

+ 2R Q0 cos( M

dy = exp- Quhy),

Ql/4 )

d = ex
v 28

dh = exp- 2sQ3),

Nm= Q%R cos - q,QY?R sin ftan 6+ (- 1)m+17ZT -20

F, (3 sinM,, - sinN,,)

(22)

I F sinMpy + QY2F, cosM ],

(23

+ 77/4)

(24)

4 F, cosM, — QY2F, sinM,],

(25

(26)

2 Q1/4
7y = 2eY20R D) dVdBdl Q2| F, sin(Mm— =n 4 w/4)
m=1

(27)

(282

(28b)

(280

(28d)

(28¢)

M= Q2R cosf - 0,Q?R sin gtan 6+ (- l)m+17ZT,

(29)

1/
1z

(30)
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IV. UNSTEADY VISCOUS FREE-SURFACE WAVES DUE 2
TO A SUDDENLY STOPPING OSEENLET s =e¥%dRY) dYdSdl QR F,(cosM,, — cosN,)
. . =1
In Sec. Ill, the point force is assumed to start suddenly 1/zm . .

from rest and to move with a constant velocity. In this sec- - QnFisinMy, —sinNy)], (39
tion, the point force is assumed to stop suddenly from a

steady state, the decaying of three-dimensional waves will be . 2 BT 3 _ errf“ho o
investigated. Cartesian coordinates are taken fixed on the sin- 7 = 26%dRY, dYd2dlQ%?| F, sin{ M, - e 2

m=1 VZe

gularity. It is assumed that the point force stops suddenly at
t=0. Fort<O0 the steady-state flow is due to an Oseenlet. Q¥n,

The governing equations are E@$) and(2) with Fs=0. - M2, Q¢ CO<Mm_ m?) : (36)
The boundary conditions are given by E(—6). We may V2e
write u(x,z,t)=Vd+V+, whered(x,t) represents an irrota- \here 7, QY4 dR dY dS, dB df M., andN,, are given in
tional flow while V1(x,t) represents a rotational flow. Thus, sec. III.

the boundary conditions can be expressed by E3—(13)
with us=vs=ws=Ps=0. The initial conditions can be given V. CHARACTERISTICS OF UNSTEADY VISCOUS WAVES

by n(x,y,t)ltzoz 73(x,y) and q>(x,y,0,t)|t:0:<1>_5(x,y,o), DUE TO AN OSEENLET
where®is the steady free-surface wave elevation, drids It can be seen from Eq21) that the disturbed waves
the velocity potenuql. Following Sec. II_I, one may obtain the ;onsist of two partSﬂE and ,7;_ As time tends to infinity,nf
steady wave elevation and the potential function as reduces to the steady viscous waves afidzanishes due to
1 (* (~ the exponential temporal decay fact(ﬂi;. Thereforeﬂ?f is
{n%(x.y), ®3(x,y,0)} = o f J {N> N3} the steady-state response agjdthe transient response to an
e Jme Oseenlet starting suddenly from rest to a constant velocity. It
expliax +i8y) is noted that the expressions of wave profiles involving
X dedB, (318 correspond to the transverse wave system, while the expres-

1aDo sions involvingqg, the diverging wave system. Accordingly,
where the solution for the unsteady waves is given by the superpo-
sition of four families of waves: the steady transverse waves,
NS = (iaFX—AFZ)[i(a2+A) — DicaA - 262A%(A+ Bo)] the steady diverging waves, the transient transverse waves,
2A and the transient diverging waves. " .
_ A2 _9ip2.2 It should be noted that the amplitudes#gfand »; are of
XEXP(= Aly) + 2(BoaF +IAF)(ae = 2IA%7) ordere relative to those ofjg and 7], whereasy; and 75 are
xexp(= Bgho), (31b) trivial components for large submergence depths due to the
presence of factody. 75 and 7, become relatively signifi-
Nflz N|s=o, (310 cant only wherhy=0(Ve), that is, when the Oseenlet is near
the free surface. Thuszf and r;l (k=1,2) can be regarded as
By = Bleo- (310 the higher-order viscous correction to the wave profile. In
addition, there exists a phase shiftof2 betweery; and 73,
which is also true fom and»{. The phases of; and 7, are
shifted due to the presence of the submergence depth. An
interesting feature of the present result is that the first-order
4 1 solution for the transient responsg, consists of two waves
n=>, 7+ 0(—), (320  with different phases of oscillation, i.eM,, andN,,, which
k=0 R represent the “noise” disturbance in the initial stage of the
where wave evolution and decay exponentially as time increases.
Although the contribution from the first-order solution re-
) mains insignificant, it represents the effect of a viscous wake.
71 = 2sd X dydodnQn IR, sinMp, + Qn?F, cosMl, Equation(21) shows that the generated unsteady viscous
el waves are confined within a wedge of semiangle as well as
(33)  within a moving finite triangular region behind the body,

The procedure to obtaim(x,y,t) follows that in Sec. llI
and will not be reproduced here. Finally, the unsteady free
surface waves in the viscous far wake become

2

2 A,={(R |0 <R=tsech|f < 6, (37
T_ 3/24R VS AT A3 —
7=~ 287 > A dnQim where g,=tari! y1/8~19°28. The moving finite regions

m=t are shown in Fig. 2, which is consistent with that obtained by

F A N+ T Liu and Tao[6] for the unsteady ship waves in an inviscid
X\ Fx| €09 Mm COg Nm™ 7 fluid. As time increases, the waves move away from the body
and the finite triangular region extends to an infinite
1/2 ; ™ ; ™ V-shaped region, which is the same as the well-known
- F,| sinl M, + — | —sin{ N, + — , (34 ; . ’ T
Qm Z{ ( m 4) ( m 4)“ (39 Kelvin ship-wave wedge for inviscid waves.
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FIG. 2. The moving triangular region for unsteady free-surface R

waves att=40, 60, and 84—, boundary line; ---, cusp line
) . . FIG. 4. The effect of parameteron the wave profiles witlng
Dugan[12] found that in two-dimensional Oseen flows, =1, £=0.01, F,=4, F,=0, #=0.33, andt=80 (---, £=0; ——,&

the wave amplitude due to a unity drag is the same as that0.005; —,£=0.0).
due to a unit lift while there is a phase shift 62 between

these two waves. Equatiof2l) shows that for the three-
dimensional case, the wave amplitude due to a unity drag
less than that due to a unit lift sin€@,,=1, and there also
exists a phase shift ofr/2 between these two waves, as while 7ks) and 7}8 simply reduce to the same one. Thus, the

shown in Fig. 3. = _ steady and transient components of the surface elevation for
A close examination of the solutions shows that there ex:

: .~“an inviscid fluid are
ist three types of decay factors for the steady wave profiles:
the radial decay factad®, the viscous decay fact(m”\n’q, and -
the submergence decay factai§ and d®. All generated ~ 7s0= 7r0= ~ Fud* 2 dpQi*cosMp+o(R™?), 0<x<t,
waves are attenuated algebraically along the distance away m=1

from the body as well as exponentially by the inclusion of (39
viscosity and submergence. The effects of parametensd . . . .

hg on the wave profile are shown in Figs. 4 and 5, respec\-NhICh agrees with that obtained by Liu and TH6], Eq.

tively. Besides these three factors, there is a temporal dece{.oﬁ]érljh?héegﬁt:&i ddilrfz:]eirr?\?igeci(;)zgl:lli?;ntgsacl;)iz:?zgntfysl(_)iltlj-
factord,, for transient waves, which ensures that the transien nd Tao[6] is the existence of a temporal decay faafpy It
components eventually vanish as time goes to infinity. F|gur@

6 shows the unsteady viscous waves at different instants. ALN be seen from Eq38) that the potential fche(_)ry predlc_ts_ a
time increases, the transient waves diminish. Thus, thgonvanlshmg transient component. This incompatibility

steady statét— =) can be attained ultimately. ;:r?gosred by the potential theory is removed by the viscous
A careful examination of factod], for the transversém Y.

_ ; i _ A special case of the present result witj=0 corresponds
=1) and diverging wavesm=2) shows that the transverse to a “singular needle” moving in a viscous flow. The corre-

wave system is_ less damped than the diverging Qne,_espgponding solution obtained by Luryé14], Eqgs. (69) and
cially in the region close t@=0. Therefore, for a point sin- 70)1 s recovered by the present solution. Another special

gularity, the t_ransve_rse wave system is the dominant COMPQsase of the present result wih=0 andh,=0 corresponds
nent of the singularity-generated wave system.

. A special case of the present result witk0 andF,=0
'éorresponds to a simple source moving in an inviscid fluid.
In the limit ase tends to zero3, 75 71, and 75 vanish

2

0.6l

i

0.4

b ]

b =

o2l if

£z

ass-en.
s L

. i -
0.2fli] 1
I
06H :
26“‘3‘0'”2110"'5'0‘;26'0”"7‘6”’86”'9'0 20""3'0”"4'0""5'1%""6'0""7'0""8'0

FIG. 3. A comparison between drag- and lift-induced waves FIG. 5. The effect of parametdr, on the wave profiles with
with hg=1, £=0.01,F=4m, F,=4m, =0.33, andt=80 (—, drag-  hp=1, £=0.01, F,=4, F,=0, =0.33, andt=80 (---, hp=0; ——,
induced wave; ——, lift-induced wave ho=0.5; —, hy=1.0).
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FIG. 6. The evolution of viscous free-surface waves with FIG. 7. The evolution of inviscid waves- -- 5 and of viscous
=1,e=0.01,F=4m, F,=0, and§=0.33(---, t=40; ——t=80; —,  waves withe=0.001,hy=1, F,=4, and #=0.33. (- t=50, —
t=00). t=100, ——-+£=200 for viscous waves

: . . . system consists of four families of waves: the steady trans-
to a point pressure moving on the surface of a viscous ﬂu'd\'/erse waves, the steady diverging waves, the transient trans-

The correspor)dmg steady solution given by Cumbgrbatck}erse waves, and the transient diverging waves. The gener-
[[9], Eq. (48)] is also recovereq by the.present' SOIU“Q”.‘ !tated unsteady waves are confined within a finite triangular
shou!d be noted_ that_the potential theories pre_dlct an 'nf'n't?egion and move away behind the point force. As time in-
amplitude for diverging waves near the moving path of acreases; the finite region extends to an infinite V-shaped re-
floating body[[5], Fig. 4]. However, the viscous theory pre- gion. The waves due to a suddenly stopping Oseenlet consist
sented in this paper predicts zero amplitude for divergingf two families of waves: the transient transverse waves and
waves asf approaches the path of a moving body, which isthe transient diverging waves.
consistent with the physical reality. All waves are attenuated algebraically along the distance
In the limit ase tends to zero, Eq(32) reduces to the away from the Oseenlet as well as exponentially by the in-
solution obtained by Wehausen and Laitddg for steady clusion of viscosity and submergence. The remarkable fea-
inviscid waves. The most remarkable feature of BBp) is  ture for the transient viscous waves is the existence of a
the presence of viscous decay factors and high-order viscouiemporal decay factor, which ensures that the transient com-
correctionsd!. (m=1,2) can be regarded as decay factors forponents will tend to zero as time goes to infinity. Thus, the
the energy dissipation in ship waves. From E(g2)—(36) steady state can be attained ultimately. The radial decay fac-
and Fig. 7, it can easily be seen that the wave will die out a§0", the submergence decay factors, and the viscous decay
time goes to infinity. However, the potential theory predicts afactors (one spatial and another temporalre analytically
nonvanishing wave for the suddenly stopping singularity,eXprGSSEd- The diverging waves are more_severgly _damped
which does not agree with the physical observation. It can b&1an the transverse waves. Hence the singularity-induced

stated that the attenuation of waves is caused by the inclVave System consists primarily of transverse waves.
sion of viscosity. It is found that the fundamental singularity in Oseen flow

(Oseenletis a general model for the simulation of a moving
body on or beneath the free surface of a real fluid since the
previous works by other authors can readily be attained by
Analytical solutions are obtained for the unsteady viscougaking the corresponding limits of the present result.

free-surface waves generated by a point force moving in an
incompressible fluid of infinite depth. The point force is as-
sumed to experience a Heaviside step change in velocity at This research was sponsored by the Hong Kong Research
the initial instant. Two categories of the velocity chan@g, Grants Council under Grant No. HKU 7076/02E and the
from zero to a constant ar{d) from a constant to zero, have Youth Foundation of Shanghai Municipal Education Com-
been analyzed. It is found that the unsteady viscous wavmission under Grant No. 04AC79.

VI. CONCLUSIONS
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